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Sparse Representation For Computer Vision and
Pattern Recognition

John Wright∗, Member, Yi Ma∗, Senior Member, Julien Mairal†, Member, Guillermo Sapiro‡, Senior Member,
Thomas Huang§, Life Fellow, Shuicheng Yan¶, Member

Abstract—Techniques from sparse signal representation are
beginning to see significant impact in computer vision, often
on non-traditional applications where the goal is not just to
obtain a compact high-fidelity representation of the observed
signal, but also to extract semantic information. The choice of
dictionary plays a key role in bridging this gap: unconven-
tional dictionaries consisting of, or learned from, the training
samples themselves provide the key to obtaining state-of-the-
art results and to attaching semantic meaning to sparse signal
representations. Understanding the good performance of such
unconventional dictionaries in turn demands new algorithmic
and analytical techniques. This review paper highlights a few
representative examples of how the interaction between sparse
signal representation and computer vision can enrich both fields,
and raises a number of open questions for further study.

I. INTRODUCTION

Sparse signal representation has proven to be an extremely
powerful tool for acquiring, representing, and compressing
high-dimensional signals. This success is mainly due to the
fact that important classes of signals such as audio and images
have naturally sparse representations with respect to fixed
bases (i.e., Fourier, Wavelet), or concatenations of such bases.
Moreover, efficient and provably effective algorithms based
on convex optimization or greedy pursuit are available for
computing such representations with high fidelity [10].

While these successes in classical signal processing appli-
cations are inspiring, in computer vision we are often more
interested in the content or semantics of an image rather than
a compact, high-fidelity representation. One might justifiably
wonder, then, whether sparse representation can be useful at
all for vision tasks. The answer has been largely positive:
in the past few years, variations and extensions of `1 mini-
mization have been applied to many vision tasks, including
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face recognition [71], image super-resolution [75], motion
and data segmentation [33], [56], supervised denoising and
inpainting [51] and background modeling [16], [21] and image
classification [47], [48]. In almost all of these applications,
using sparsity as a prior leads to state-of-the-art results.

The ability of sparse representations to uncover semantic in-
formation derives in part from a simple but important property
of the data: although the images (or their features) are naturally
very high dimensional, in many applications images belonging
to the same class exhibit degenerate structure. That is, they
lie on or near low-dimensional subspaces, submanifolds, or
stratifications. If a collection of representative samples are
found for the distribution, we should expect that a typical
sample have a very sparse representation with respect to
such a (possibly learned) basis.1 Such a sparse representation,
if computed correctly, could naturally encode the semantic
information of the image.

However, to successfully apply sparse representation to
computer vision tasks, we typically have to address the addi-
tional problem of how to correctly choose the basis for repre-
senting the data. This is different from the conventional setting
in signal processing where a given basis with good property
(such as being sufficiently incoherent) can be assumed. In
computer vision, we often have to learn from given sample
images a task-specific (often overcomplete) dictionary; or we
have to work with one that is not necessarily incoherent. As
a result, we need to extend the existing theory and algorithms
for sparse representation to new scenarios.

This paper will feature a few representative examples of
sparse representation in computer vision. These examples
not only confirm that sparsity is a powerful prior for visual
inference, but also suggest how vision problems could enrich
the theory of sparse representation. Understanding why these
new algorithms work and how well they work can greatly
improve our insights to some of the most challenging problems
in computer vision.

II. ROBUST FACE RECOGNITION: CONFLUENCE OF
PRACTICE AND THEORY

Automatic face recognition remains one of the most visible
and challenging application domains of computer vision [77].
Foundational results in the theory of sparse representation have
recently inspired significant progress on this difficult problem.

1We use the term “basis” loosely here, since the dictionary can be
overcomplete and, even in the case of just complete, there is no guarantee of
independence between the atoms.
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The key idea is a judicious choice of dictionary: representing
the test signal as a sparse linear combination of the training
signals themselves. We will first see how this approach leads to
simple and surprisingly effective solutions to face recognition.
In turn, the face recognition example reveals new theoretical
phenomena in sparse representation that may seem surprising
in light of prior results.

A. From Theory to Practice: Face Recognition as Sparse
Representation

Our approach to face recognition assumes access to well-
aligned training images of each subject, taken under varying il-
lumination.2 We stack the given Ni training images from the i-
th class as columns of a matrix Di

.= [di,1,di,2, . . . ,di,Ni
] ∈

Rm×Ni , each normalized to have unit `2 norm. One classi-
cal observation from computer vision is that images of the
same face under varying illumination lie near a special low-
dimensional subspace [6], [38], often called a face subspace.
So, given a sufficiently expressive training setDi, a new image
of subject i taken under different illumination and also stacked
as a vector x ∈ Rm, can be represented as a linear combination
of the given training: x ≈ Diαi for some coefficient vector
αi ∈ RNi .

The problem becomes more interesting and more challeng-
ing if the identity of the test sample is initially unknown.
We define a new matrix D for the entire training set as the
concatenation of the N =

∑
iNi training samples of all c

object classes:

D
.= [D1,D2, . . . ,Dc] = [d1,1,d1,2, . . . ,dk,Nk

]. (1)

Then the linear representation of x can be rewritten in terms
of all training samples as

x = Dα0 ∈ Rm, (2)

where α0 = [0, · · · , 0,αTi , 0, . . . , 0]T ∈ RN is a coefficient
vector whose entries are all zero except for those associated
with the i-th class. The special support pattern of this coef-
ficient vector is highly informative for recognition: ideally, it
precisely identifies the subject pictured. However, in practical
face recognition scenarios, the search for such an informative
coefficient vector α0 is often complicated by the presence
of partial corruption or occlusion: gross errors affect some
fraction of the image pixels. In this case, the above linear
model (2) should be modified as

x = x0 + e0 = Dα0 + e0, (3)

where e0 ∈ Rm is a vector of errors – a fraction, ρ, of its
entries are nonzero.

Thus, face recognition in the presence of varying illumina-
tion and occlusion can be treated as the search for a certain
sparse coefficient vector α0, in the presence of a certain sparse
error e0. The number of unknowns in (3) exceeds the number
of observations, and we cannot directly solve for α0. However,
under mild conditions [28], the desired solution (α0, e0) is

2For a detailed explanation of how such images can be obtained, see [68].
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Fig. 1. Overview of the face recognition approach. The method represents
a test image (left), which is potentially occluded (top) or corrupted (bottom),
as a sparse linear combination of all the training images (middle) plus sparse
errors (right) due to occlusion or corruption [71]. Red (darker) coefficients
correspond to training images of the correct individual. The algorithm de-
termines the true identity (indicated with a red box at second row and third
column) from 700 training images of 100 individuals (7 each) in the standard
AR face database.

not only sparse, it is the sparsest solution to the system of
equations (3):

(α0, e0) = arg min ‖α‖0 + ‖e‖0 subj x = Dα+ e. (4)

Here, the `0 “norm” ‖ · ‖0 counts the number of nonzeros in a
vector. Originally inspired by theoretical results on equivalence
between `1 and `0-minimizations [13], [24], in [71] the authors
proposed to seek this informative vector α0 by solving the
convex relaxation

min ‖α‖1 + ‖e‖1 subj x = Dα+ e, (5)

where ‖α‖1
.=
∑
i |αi|. That work reported striking empirical

results: the `1-minimizer, visualized in Figure 1, has a strong
tendency to separate the identity of the face (red coefficients)
from the error due to corruption or occlusion.

Once the `1-minimization problem has been solved (see,
e.g., [9], [26], [30]), classification (identifying the subject
pictured) or validation (determining if the subject is present in
the training database) can proceed by considering how strongly
the recovered coefficients concentrate on any one subject (see
[71] for details). Here, we present only a few representative
results; a more thorough empirical evaluation can be found
in [71]. Figure 2 (left) compares the recognition rate of this
approach (labeled SRC) with several popular methods on
the Extended Yale B Database [38] under varying levels of
synthetic block occlusion.

Figure 2 compares the sparsity-based approach outlined here
with several popular methods from the literature3: the Principal
Component Analysis (PCA) approach of [67], Independent
Component Analysis (ICA) [43], and Local Nonnegative Ma-
trix Factorization (LNMF) [46]. The first provides a standard
baseline of comparison, while the latter two methods are
more directly suited for occlusion, as they produce lower-
dimensional feature sets that are spatially localized. Figure
2 left also compares to the Nearest Subspace method [45],
which makes similar use of linear illumination models, but is
not based on sparsity and does not correct sparse errors.

The `1-based approach achieves the highest overall recogni-
tion rate of the methods tested, with almost perfect recognition

3See [77] for a more thorough review of the vast literature on face
recognition.
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Fig. 2. Face recognition and validation. Left: Recognition rate of the `1-
based method (labeled SRC), as well as Principal Component Analysis (PCA)
[67], Independent Component Analysis [43], Localized Nonnegative Matrix
Factorization (LNMF) [46] and Nearest Subspace (NS) [45] on the Extended
Yale B Face Database under varying levels of contiguous occlusion. Right:
Receiver Operating Characteristic (ROC) for validation with 30% occlusion.
In both scenarios, the sparse representation-based approach significantly
outperforms the competitors [71].

µ

Cross Polytope ±I

di ∼ N (µ, σ2I)

0

Bouquet D+1

−1

Coherent Gaussian Vectors

Fig. 3. The “cross-and-bouquet” model. Left: the bouquet D and the
crosspolytope spanned by the matrix ±I. Right: tip of the bouquet magnified;
it is modeled as a collection of iid Gaussian vectors with small variance σ2

and common mean vector µ. The cross-and-bouquet polytope is spanned by
vertices from both the bouquet D and the cross ±I [70].

up to 30% occlusion and a recognition rate above 90% with
40% occlusion. Figure 2 (right) shows the validation perfor-
mance of the various methods, under 30% contiguous occlu-
sion, plotted as a Reciever Operating Characteristic (ROC)
curve. At this level of occlusion, the sparsity-based method
is the only one that performs significantly better than chance.
The performance under random pixel corruption is even more
striking (see Figure 1, bottom), with recognition rates above
90% even at 70% corruption.

B. From Practice to Theory: Dense Error Correction by `1-
Minimization

The strong empirical results alluded to in the previous
section seem to demand a correspondingly strong theoretical
justification. However, a more thoughtful consideration reveals
that the underdetermined system of linear equations (3) does
not satisfy popular sufficient conditions for guaranteeing cor-
rect sparse recovery by `1-minimization.

In face recognition, the columns of A are highly correlated:
they are all images of some face. As m becomes large (i.e.
the resolution of the image becomes high), the convex hull
spanned by all face images of all subjects is only an extremely
tiny portion of the unit sphere Sm−1. For example, the images
in Figure 1 lie on S8,063. The smallest inner product with
their normalized mean is 0.723; they are contained within
a spherical cap of volume ≤ 1.47 × 10−229. These vectors
are tightly bundled together as a “bouquet,” whereas the

standard pixel basis ±I with respect to which we represent
the errors e forms a “cross” in Rm , as illustrated in Figure 3.
The incoherence [25] and restricted isometry [13] properties
that are so useful in providing performance guarantees for
`1-minimization therefore do not hold for the “cross-and-
bouquet” matrix [D I] (similarly, conditions that guarantee
sparse recovery via greedy techniques such as orthogonal
matching pursuit are also often violated by these type of
dictionaries). Also, the density of the desired solution is not
uniform either: α is usually a very sparse non-negative vector4,
but e could be dense (with a fraction nonzeros close to one)
and have arbitrary signs. Existing results for recovering sparse
signals suggest that `1-minimization may have difficulty in
dealing with such signals, contrary to its empirical success in
face recognition.

In an attempt to better understand the face recognition ex-
ample outlined above, we consider the more abstract problem
of recovering such a non-negative sparse signal α0 ∈ RN
from highly corrupted observations x ∈ Rm:

x = Dα0 + e0,

where e0 ∈ Rm is a vector of errors of arbitrary magnitude.
The model for D ∈ Rm×N should capture the idea that it
consists of small deviations about a mean, hence a “bouquet.”
We can model this by assuming the columns of D are iid
samples from a Gaussian distribution:

D = [d1 . . .dN ] ∈ Rm×N , di ∼iid N
(
µ, ν

2

m Im
)
,

‖µ‖2 = 1, ‖µ‖∞ ≤ Cµm−1/2.

(6)

Together, the two assumptions on the mean force µ to remain
incoherent with the standard basis (or “cross”) as m→∞.

We study the behavior of the solution to the `1-minimization
(5) for this model, in the following asymptotic scenario:

Assumption 1 (Weak Proportional Growth): A sequence of
signal-error problems exhibits weak proportional growth with
parameters δ > 0, ρ ∈ (0, 1), C0 > 0, η0 > 0, denoted
WPGδ,ρ,C0,η0 , if as m→∞,

N

m
→ δ,

‖e0‖0
m

→ ρ, ‖α0‖0 ≤ C0m
1−η0 . (7)

This should be contrasted with the “total proportional growth”
(TPG) setting of, e.g., [24], in which the number of nonzero
entries in the signal α0 also grows as a fixed fraction of the
dimension. In that setting, one might expect a sharp phase
transition in the combined sparsity of (α0, e0) that can be
recovered by `1-minimization. In WPG, on the other hand,
we observe a striking phenomenon not seen in TPG: the
correction of arbitrary fractions of errors. This comes at the
expense of the stronger assumption that ‖α0‖0 is sublinear,
an assumption that is valid in some real applications such as
the face recognition example above.

In the following, we say the cross-and-bouquet model is `1-
recoverable at (I, J,σ) if for all α0 ≥ 0 with support I and

4The nonnegativity of α can be viewed as a consequence of convex
cone models for illumination [38]; the existence of such a solution can be
guaranteed by choosing training samples that span the cone of observable test
illuminations [68].
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e0 with support J and signs σ,

(α0, e0) = arg min ‖α‖1 + ‖e‖1
subject to Dα+ e = Dα0 + e0, (8)

and the minimizer is uniquely defined. From the geometry of
`1-minimization, if (8) does not hold for some pair (α0, e0),
then it does not hold for any (α, e) with the same signs
and support as (α0, e0) [23]. Understanding `1-recoverability
at each (I, J,σ) completely characterizes which solutions to
x = Dα+e can be correctly recovered. In this language, the
following characterization of the error correction capability of
`1-minimization can be given [70]:

Theorem 1 (Error Correction with the Cross-and-Bouquet):
For any δ > 0, ∃ ν0(δ) > 0 such that if ν < ν0 and ρ < 1,
in WPGδ,ρ,C0,η0 with D distributed according to (6), if the
error support J and signs σ are chosen uniformly at random,
then as m→∞,

PD,J,σ
[
`1-recoverability at (I, J, σ) ∀ I ∈

(
[N ]
k1

)]
→ 1.

In other words, as long as the bouquet is sufficiently tight,
asymptotically `1-minimization recovers any non-negative
sparse signal from almost any error with support size less
than 100% [70]. This provides some theoretical corroboration
to the strong practical and empirical results observed in the
face recognition example, especially in the presence of random
corruption.

C. Remarks on Sparsity-Based Recognition

The theoretical justifications of this approach discussed here
have inspired further practical work in this direction. The work
reported in [68] addresses issues such as pose and alignment as
well as obtaining sufficient training data of each subject, and
integrates these results into a practical system for face recog-
nition that achieves state-of-the-art results. Moreover, while in
this section we have focused on the interplay between theory
and practice in one particular application, face recognition,
similar ideas have seen application on a number of problems
in and even beyond vision, e.g., in sensor networks and human
activity classification [74] as well as speech recognition [36],
[37].

Although the cross-and-bouquet model has successfully
explained the error correction ability of `1 minimization in
this application, the striking discriminative power of the sparse
representation (see also sections III and IV) still lacks rigorous
mathematical justification. Better understanding this behavior
seems to require a better characterization of the internal
structure of the bouquet and its effect on the `1-minimizer.
To the best of our knowledge, this remains a wide open topic
for future investigation.

III. `1-GRAPHS

The previous section showed how for face recognition, a
representation of the test sample in terms of the training
samples themselves yielded useful information for recogni-
tion. Whereas before, this representation was motivated via
linear illumination models, we now consider a more general

setting in which an explicit linear model is absent. Here, the
sparse coefficients computed by `1-minimization are used to
characterize relationships between the data samples, in order to
accomplish various machine learning tasks. The key idea is to
accomplish this by interpreting the coefficients as weights in a
directed graph, which we term the `1-graph (see also [48] for
a graphical model interpretation of the sparse representation
approach for image classification described in Section IV).

A. Motivations

An informative graph, directed or undirected, is critical
for graph-based machine learning tasks such as data cluster-
ing, subspace learning, and semi-supervised learning. Popular
spectral approaches to clustering start with a graph repre-
senting pairwise relationships between the data samples [61].
Manifold learning algorithms such as ISOMAP [63], Locally
Linear Embedding (LLE) [58], and Laplacian Eigenmaps (LE)
[8], all rely on graphs constructed with different motivations
[73]. Moreover, most popular subspace learning algorithms,
e.g., Principal Component Analysis (PCA) [42] and Linear
Discriminant Analysis (LDA) [7], can all be explained within
the graph embedding framework [73]. Also, a number of semi-
supervised learning algorithms are driven by the regularizing
graphs constructed over both labeled and unlabeled data [78].

Most of the works described above rely on one of two pop-
ular approaches to graph construction: the k-nearest-neighbor
method and the ε-ball method. The first assigns edges between
each data point and its k-nearest neighbors, whereas the second
assigns edges between each data point and all samples within
its surrounding ε-ball. From a machine learning perspective,
the following graph characteristics are desirable:

1) High discriminating power. For data clustering and label
propagation in semi-supervised learning, the data from
the same cluster/class are expected to be assigned large
connecting weights. The graphs constructed in those
popular ways however, often fail to capture piecewise
linear relationships between data samples in the same
class.

2) Sparsity. Recent research on manifold learning [8] shows
that a sparse graph characterizing locality relations can
convey the valuable information for classification. Also
for large-scale applications, a sparse graph is the in-
evitable choice due to storage limitations.

3) Adaptive neighborhood. It often happens that the avail-
able data are inadequate and do not evenly distribute,
resulting in different neighborhood structure for differ-
ent data points. Both the k-nearest-neighbor and ε-ball
methods (in general) use a fixed global parameter to
determine the neighborhoods for all the data, and thus
do not handle situations where an adaptive neighborhood
is required.

Enlightened by recent advances in our understanding of
sparse coding by `1 optimization [24] and in applications such
as the face recognition example described in the previous
section, we propose to construct the so-called `1-graph via
sparse data coding, and then harness it for popular graph-based
machine learning tasks. An `1 graph over a dataset is derived
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by encoding each datum as the sparse representation of the
remaining samples, and automatically selects the most infor-
mative neighbors for each datum. The sparse representation
computed by `1-minimization naturally satisfies the properties
of sparsity and adaptivity. Moreover, we will see empirically
that characterizing linear relationships between data samples
via `1-minimization can significantly enhance the performance
of existing graph-based learning algorithms.

B. `1-Graph Construction

We represent the sample set as a matrix X =
[x1,x2, . . . ,xN ] ∈ Rm×N , where N is the sample num-
ber and m is the feature dimension. We denote the `1-
graph as G = {X,W}, where X is the vertex set and
W = [wij ] ∈ RN×N the edge weight matrix. The graph
is constructed in an unsupervised manner, with a goal of
automatically determining the neighborhood structure as well
as the corresponding connection weights for each datum.

Unlike the k-nearest-neighbor and ε-ball based graphs in
which the edge weights characterize pairwise relations, the
edge weights of `1-graph are determined in a group manner,
and the weights related to a certain vertex characterize how
the rest samples contribute to the sparse representation of this
vertex. The procedure to construct the `1-graph is:

1) Inputs: The sample set X .
2) Sparse coding: For each sample xi, solve the `1 norm

minimization problem

min
αi
‖αi‖1, s.t. xi = Diαi, (9)

where matrix Di = [x1, ...,xi−1,xi+1, ...,xN , I] ∈
Rm×(m+N−1) and αi ∈ Rm+N−1.

3) Graph weights setting: Wij = αij (nonnegativity con-
straints may be imposed if for similarity measurement)
if i > j, and Wij = αij−1 if i < j.

For data with linear or piecewise-linear class structure the
sparse representation conveys important discriminative infor-
mation, which is automatically encoded in the `1-graph. The
derived graph is naturally sparse – the sparse representation
computed by `1-minimization never involves more than m
nonzero coefficients, and may be especially sparse when
the data have degenerate or low-dimensional structure. The
number of neighbors selected by `1-graph is adaptive to each
data point, and these numbers are automatically determined by
the `1 optimization process. Thus, the `1-graph possesses all
the three characteristics of a desired graph for data clustering,
subspace learning, and semi-supervised learning [18], [72].

C. `1-Graph for Machine Learning Tasks

An informative graph is critical for achieving high per-
formance with graph-based learning algorithms. Similar to
conventional graphs constructed by k-nearest-neighbor or ε-
ball method, `1-graph can also be integrated with graph-based
algorithms for tasks such as data clustering, subspace learning,
and semi-supervised learning. In the following sections, we
show how `1-graphs can be used for each of these purposes.

1) Spectral clustering with `1-graph: Data clustering is the
partitioning of samples into subsets, such that the data within
each subset are similar to each other. Some of the most popular
algorithms for this task are based on spectral clustering [61].
Using the `1-graph, the algorithm can automatically derive
the similarity matrix from the calculation of these sparse
codings (namely wij = αij). Inheriting the property of greater
discriminating power from `1-graph, the spectral clustering
based on `1-graph has greater potential to correctly separate
the data into different clusters. Based on the derived `1-graph,
the spectral clustering [61] process can be performed in the
same way as for conventional graphs.

2) Subspace learning with `1-graph: Subspace learning
algorithms search for a projection matrix P ∈ Rm×d (usually
d � m) such that distances in the projected space are as
informative as possible for classification. If the dimension of
the projected space is large enough, then linear relationships
between the training samples may be preserved, or approx-
imately preserved. The pursuit of a projection matrix that
simultaneously respects the sparse representations of all of the
data samples can be formulated as an optimization problem
(closely related to the problem of metric learning)

min
N∑
i=1

∥∥∥PTxi − N∑
j=1

wijP
Txj

∥∥∥2

2
subj PTXXTP = I

(10)
and solved via generalized eigenvalue decomposition.

3) Semi-supervised Learning with `1-graph: Semi-
supervised learning has attracted a great deal of recent
attention. The main idea is to improve classifier performance
by using additional unlabeled training samples to characterize
the intrinsic geometry of the observation space (see for
example [54] for the application of sparse models for semi-
supervised learning problems). For classification algorithms
that rely on optimal projections or embeddings of the data,
this can be achieved by adding a regularization term to the
objective function that forces the embedding to respect the
relationships between the unlabeled data.

In the context of `1-graphs, we can modify the classical
LDA criterion to also demand that the computed projection
respects the sparse coefficients computed by `1-minimization:

min
P

γSw(P ) + (1− γ)
∑N
i=1 ‖PTxi −

∑N
j=1 wijP

Txj‖22
Sb(P )

,

where Sw(P ) and Sb(P ) measure the within-class scatter and
inter-class scatter of the labeled data respectively, and γ ∈
(0, 1) is a coefficient that balances the supervised term and
`1-graph regularization term (see also [57]).

D. Experimental Results

In this section, we systematically evaluate the effectiveness
of the `1-graph in the machine learning scenarios outlined
above. The USPS handwritten digit database [41] (200 samples
are selected for each class), forest covertype database [1]
(120 samples are selected for each class), and ETH-80 object
recognition database [2] are used for the experiments. Note
that all the results reported here are from the best tuning of
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all possible algorithmic parameters, and the results on the first
two databases are the averages of ten runs while the results
on ETH-80 are from one run.

Table I compares the accuracy of spectral clustering based
on the `1-graph with spectral algorithms based on a number
of alternative graph constructions, as well as the simple base-
line of K-means. The clustering results from `1-graph based
spectral clustering algorithm are consistently much better than
the other algorithms tested.

TABLE I
CLUSTERING ACCURACIES (NORMALIZED MUTUAL INFORMATION) FOR

SPECTRAL CLUSTERING ALGORITHMS BASED ON `1-GRAPH,
GAUSSIAN-KERNEL GRAPH (G-G), LE-GRAPH (LE-G), AND LLE-GRAPH

(LLE-G), AS WELL AS PCA+K-MEANS (PCA+KM).

Cluster # `1-graph G-g LE-g LLE-g PCA+Km
USPS : 7 0.962 0.381 0.724 0.565 0.505
FOR. : 7 0.763 0.621 0.619 0.603 0.602
ETH. : 7 0.605 0.371 0.522 0.478 0.428

Our next experiment concerns data classification based on
low-dimensional projections. Table II compares the classi-
fication accuracy of the `1-graph based subspace learning
algorithm with several more conventional subspace learning
algorithms. The following observations emerge: 1) the `1-
graph based subspace learning algorithm is superior to all
the other evaluated unsupervised subspace learning algorithms,
and 2) `1-graph based subspace learning algorithm generally
performs a little worse than the supervised algorithm Fish-
erfaces, but on the forest covertype database, `1-graph based
subspace learning algorithm is better than Fisherfaces. Note
that all the algorithms are trained on all the data available,
and the results are based on nearest neighbor classifier; for all
experiments, 10 samples for each class are randomly selected
as gallery set and the remaining ones are used for testing.

TABLE II
COMPARISON CLASSIFICATION ERROR RATES (%) FOR DIFFERENT

SUBSPACE LEARNING ALGORITHMS. LPP AND NPE ARE THE LINEAR
EXTENSIONS OF LE AND LLE RESPECTIVELY.

Gallery # PCA NPE LPP `1-graph-SL Fisherfaces [7]
USPS : 10 37.21 33.21 30.54 21.91 15.82
FOR. : 10 27.29 25.56 27.32 19.76 21.17
ETH. : 10 47.45 45.42 44.74 38.48 13.39

Finally, we evaluate the effectiveness of the `1 graph in
semi-supervised learning scenarios. Table III compares results
with the `1-graph to several alternative graph constructions.
We make two observations: 1) the `1-graph based semi-
supervised learning algorithm generally achieves the lowest
error rates compared to semi-supervised learning based on
more conventional graphs, and 2) semi-supervised learning
based on the `1-graph and the graph used in LE algorithm
can generally bring accuracy improvements compared to the
counterpart without harnessing extra information from unla-
beled data. Note that all the semi-supervised algorithms are
based on the supervised algorithm Marginal Fisher Analysis
(MFA) [73].

E. Remarks on `1-Graphs
Although in this section we have illustrated with a few

generic examples the potential of `1-graphs for some gen-

TABLE III
COMPARISON CLASSIFICATION ERROR RATES (%) FOR SEMI-SUPERVISED

ALGORITHMS `1-GRAPH (`1-G), LE-GRAPH (LE-G), AND LLE-GRAPH
(LLE-G), SUPERVISED (MFA) AND UNSUPERVISED LEARNING (PCA)

ALGORITHMS.
Labeled # `1-g LLE-g LE-g MFA PCA
USPS : 10 25.11 34.63 30.74 34.63 37.21
FOR. : 10 17.45 24.93 22.74 24.93 27.29
ETH. : 10 30.79 38.83 34.54 38.83 47.45

eral problems in machine learning, the idea of using sparse
coefficients computed by `1-minimization for clustering has
already found good success in the classical vision problem
of segmenting multiple motions in a video, where low-
dimensional self-expressive representations can be motivated
by linear camera models. In that domain, algorithms combin-
ing sparse representation and spectral clustering also achieve
state-of-the-art results on extensive public data sets [33], [56].
Despite apparent empirical successes, precisely characterizing
the conditions under which `1-graphs can better capture certain
geometric or statistic relationships among data remains an
open problem. We expect many interesting and important
mathematical problems may arise from this rich research
field. The next section further investigates the use of sparse
representations for image classification, including exploiting
the sparse coefficients with respect to learned dictionaries.

IV. DICTIONARY LEARNING FOR IMAGE ANALYSIS

The previous sections examined applications in vision and
machine learning in which a sparse representation in an over-
complete dictionary consisting of the samples themselves
yielded semantic information. For many applications, however,
rather than simply using the data themselves, it is desirable
to use a compact dictionary that is obtained from the data
by optimizing some task-specific objective function. This
section provides an overview of approaches to learning such
dictionaries, as well as their applications in computer vision
and image processing.

A. Motivations

As detailed in the previous sections, sparse modeling calls
for constructing efficient representations of data as a (often
linear) combination of a few typical patterns (atoms) learned
from the data itself. Significant contributions to the theory
and practice of learning such collections of atoms (usually
called dictionaries or codebooks), e.g., [4], [34], [52], and of
representing the actual data in terms of them, e.g., [17], [20],
[30], have been developed in recent years, leading to state-of-
the-art results in many signal and image processing tasks [11],
[32], [44], [48], [51], [54]. We refer the reader to [10] for a
recent review on the subject.

The actual dictionary plays a critical role, and it has
been shown again and again that learned and data adaptive
dictionaries significantly outperform off-the-shelf ones such as
wavelets. Current techniques for obtaining such dictionaries
mostly involve their optimization in terms of the task to be
performed, e.g., representation [34], denoising [4], [51], and
classification [48]. Theoretical results addressing the stability
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and consistency of the sparse solutions (active set of selected
atoms), as well as the efficiency of the coding algorithms,
are related to intrinsic properties of the dictionary such as
the mutual coherence, the cumulative coherence, and the
Gram matrix norm of the dictionary [28], [31], [40], [59],
[66]. Dictionaries can be learned by locally optimizing these
and related objectives [29], [55]. In this section, we present
basic concepts associated with dictionary learning, and provide
illustrative examples of algorithm performance.

B. Sparse Modeling for Image Reconstruction

Let X ∈ Rm×N be a set of N column data vectors xj ∈
Rm (e.g., image patches), D ∈ Rm×K be a dictionary of K
atoms represented as columns dk ∈ Rm. Each data vector xj
will have a corresponding vector of reconstruction coefficients
αj ∈ RK (in contrast with the cases described in previous
sections, K will now be orders of magnitude smaller than
N ), which we will treat as columns of a matrix

A = [α1, . . . ,αN ] ∈ RK×N .

The goal of sparse modeling is to design a dictionary D such
that X ' DA with ‖αj‖0 sufficiently small (usually below
some threshold) for all or most data samples xj . For a fixed
D, the computation of A is called sparse coding.

We begin our discussion with the standard `0 or `1 penalty
modeling problem,

(A∗,D∗) = arg min
A,D
‖X −DA‖2F + λ ‖A‖p , (11)

where ‖·‖F denotes Frobenius norm and p = 0, 1. The cost
function to be minimized in (11) consists of a quadratic
fitting term and an `0 or `1 regularization term for each
column of A, the balance of the two being defined by the
penalty parameter λ (this parameter has been studied in [35],
[39], [55], [65], [79]). As mentioned above, the `1 norm
can be used as an approximation to `0, making the problem
convex in A while still encouraging sparse solutions [64].
While for reconstruction we found that the `0 penalty often
produces better results, `1 leads to more stable active sets
and is preferred for the classification tasks introduced in the
next section. In addition, these costs can be replaced by a
(non-convex) Lorentzian penalty function, motivated either by
further approximating the `0 by `1 [15], or by considering
a mixture of Laplacians prior for the coefficients in A and
exploiting MDL concepts [55], instead of the more classical
Laplacian prior.5

Since (11) is not simultaneously convex in {A,D}, coordi-
nate descent type optimization techniques have been proposed
[4], [34]. These approaches have been extended for multiscale
dictionaries and color images in [51], leading to state-of-the-art
results. See Figure 4 for an example of color image denosing
with this approach, and [49], [51] for numerous additional
examples, comparisons, and applications in image demosaic-
ing, image inpainting, and image denoising. An example of a

5The expression (11) can be derived from a MAP estimation with a
Laplacian prior for the coefficients in A and a Gaussian prior for the sparse
representation error.

Fig. 4. Image denoising via sparse modeling and dictionary learned from
a standard set of color images [49].

learned dictionary is shown in Figure 4 as well (K = 256).
It is important to note that for image denoising, overcomplete
dictionaries are used, K > m, and the patch sizes vary from
7× 7, m = 49, to 20× 20, m = 400 (in the multiscale case),
with a sparsity of about 1/10th of the signal dimension m.

State-of-the-art results obtained in [51] are “shared” with
those in [19], which extends the non-local means approach
developed in [5], [12]. Interestingly, the two frameworks are
quite related, since they both use patches as building blocks
(in [51], the sparse coding is applied to all overlapping
image patches), and while a dictionary is learned in [51]
from a large dataset, the patches of the processed image
itself are the “dictionary” in non-local means. The sparsity
constraint in [51] is replaced by a proximity constraint and
other processing steps in [12], [19]. The exact relationship and
the combination of non-local-means with sparsity modeling
has been recently exploited by the authors of [47] to further
improve on these results. The authors also developed a very
fast on-line dictionary learning approach.

C. Sparse Modeling for Image Classification

While image representation and reconstruction has been the
most popular goal of sparse modeling and dictionary learning,
other important image science applications are starting to
be addressed by this framework, in particular, classification
and detection. In [53], [54] the authors use the reconstruc-
tion/generative formulation (11), exploiting the quality of the
representation and/or the coefficients A for the classification
tasks. This generative only formulation can be augmented
by discriminative terms [47], [48], [50], [57], [62] where an
additional term is added in (11) to encourage the learning of
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Fig. 5. Image classification via sparse modeling. Two classes have been
considered, “bikes” and “background,” and the dictionaries where trained in
a semi-supervised fashion [47].

dictionaries that are most relevant to the task at hand. The
dictionary learning then becomes task-dependent and
(semi-) supervised. In the case of [57] for example, a Fisher-
discriminant type term is added in order to encourage signals
(images) from different classes to pick different atoms from the
learned dictionary. In [47], multiple dictionaries are learned,
one per class, so that each class’s dictionary provides a
good reconstruction for its corresponding class and a poor
one for the other classes (simultaneous positive and negative
learning). This idea was then applied in [50] for learning to
detect edges as part of an image classification system. These
frameworks have been extended in [48], where a graphical
model interpretation and connections with kernel methods
are presented as well for the novel sparse model introduced
there. Of course, adding such new terms makes the actual
optimization even more challenging, and the reader is referred
to those papers for details.

This framework of adapting the dictionary to the task,
combining generative with discriminative terms for the case of
classification, has been shown to outperform the generic dictio-
nary learning algorithms, achieving state-of-the-art results for
a number of standard datasets. An example from [47] of the
detection of patches corresponding to bikes from the popular
Gratz dataset is shown in Figure 5. The reader is referred to
[47], [48], [50], [57] for additional examples and comparisons
with the literature.

D. Learning to Sense

As we have seen, learning overcomplete dictionaries that
facilitate a sparse representation of the data as a liner combi-
nation of a few atoms from such dictionary leads to state-of-
the-art results in image and video restoration and classification.
The emerging area of compressed sensing (CS), see [3], [14],
[27] and references therein, has shown that sparse signals
can be recovered from far fewer samples than required by
the classical Shannon-Nyquist Theorem. The samples used
in CS correspond to linear projections obtained by a sensing
projection matrix. It has been shown that, for example, a non-
adaptive random sampling matrix satisfies the fundamental
theoretical requirements of CS, enjoying the additional benefit
of universality. A projection sensing matrix that is optimally

Fig. 6. Simultaneously learning the dictionary and sensing matrices (right
figure) significantly outperforms classical CS, where for example a random
sensing matrix is used in conjunction with an independently learned dictionary
(left figure) [29].

designed for a certain class of signals can further improve
the reconstruction accuracy or further reduce the necessary
number of samples. In [29], the authors extended the for-
mulation in (11) to design a framework for the joint design
and optimization, from a set of training images, of the non-
parametric dictionary and the sensing matrix Φ,

(A∗,D∗,Φ∗) = arg min
A,D,Φ

‖X −DA‖2F + λ1 ‖Y − ΦDA‖2F

+ λ2

∥∥(ΦD)T (ΦD)− I
∥∥2

F
+ λ3 ‖A‖p .

In this formulation we include the sensing matrix Φ in
the optimization, the sensed signal Y obtained from the data
X via Y = ΦX , and the critical term that encourages
orthogonality of the components of the effective dictionary
ΦD, as suggested by the critical restricted isometry property in
CS (see [29] for details on the optimization of this functional).
This joint optimization outperforms both the use of random
sensing matrices and those matrices that are optimized inde-
pendently of the learning of the dictionary, Figure 6. Particular
cases of the proposed framework include the optimization
of the sensing matrix for a given dictionary as well as
the optimization of the dictionary for a pre-defined sensing
environment (see also [31], [60], [69]).

E. Remarks on Dictionary Learning

In this section we briefly discussed the topic of dictionary
learning. We illustrated with a number of examples the im-
portance of learning the dictionary for the task as well as
the processing and acquisition pipeline. Sparse modeling, and
in particular the (semi-) supervised case, can be considered
as a non-linear extension of metric learning (see [76] for
bibliography on the subject and [62] for details on the con-
nections between sparse modeling and metric learning). Such
interesting connection brings yet another exciting aspect into
the ongoing sparse modeling developments. The connection
with (regression) approaches based on Dirichlet priors, e.g.,
[22] and references therein, is yet another interesting area for
future research.
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V. FINAL REMARKS

The examples considered in this paper illustrate several
important aspects in the application of sparse representation
to problems in computer vision. First, sparsity provides a
powerful prior for inference with high-dimensional visual
data that have intricate low-dimensional structures. Methods
like `1-minimization offer computational tools to extract such
structures and hence help harness the semantics of the data.
As we have seen in the few highlighted examples, if properly
applied, algorithms based on sparse representation can often
achieve state-of-the-art performance. Second, the key to real-
izing this power is choosing the dictionary in such a way that
sparse representations with respect to the dictionary correctly
reveal the semantics of the data. This can be done implicitly, by
building the dictionary from data with linear or locally linear
structure, or explicitly, by optimizing various measures of how
informative the dictionary is. Finally, rich data and problems in
computer vision provide new examples for the theory of sparse
representation, in some cases demanding new mathematical
analysis and justification. Understanding the performance of
the resulting algorithms can greatly enrich our understanding
of both sparse representation and computer vision.
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